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The increasing interest in larger spatial and temporal scale models and high resolution input data pro-
cessing comes at a price of higher computational demand. This price is evidently even higher when
common modeling routines such as calibration and uncertainty analysis are involved. Likewise, methods
and techniques for reducing computation time in large scale socio-environmental modeling software is
growing. Recent advancements in distributed computing such as Grid infrastructure have provided
further opportunity to this effort. In the interest of gaining computational efficiency, we developed
generic tools and techniques for enabling the Soil and Water Assessment Tool (SWAT) model application
to run on the EGEE (Enabling Grids for E-science projects in Europe) Grid. Various program components/
scripts were written to split a large scale hydrological model of the Soil and Water Assessment Tool
(SWAT), to submit the split models to the Grid, and to collect and merge results into single output format.
A three-step procedure was applied to take advantage of the Grid. Firstly, a python script was run in
order to split the SWAT model into several sub-models. Then, individual sub-models were submitted in
parallel for execution on the Grid. Finally, the outputs of the sub-basins were collected and the reach
routing process was performed with another script executing a modified SWAT program. We conducted
experimental simulations with multiple temporal and spatial scale hydrological models on the Grid
infrastructure. Results showed that, in spite of computing overheads, parallel computation of socio-
environmental models on the Grid is beneficial for model applications especially with large spatial
and temporal scales. In the end, we conclude by recommending methods for further reducing compu-
tational overheads while running large scale model applications on the Grid.

© 2012 Elsevier Ltd. All rights reserved.

Software availability

However, the effort on devising methods or techniques of reducing
computation time in large scale socio-environmental modeling

The codes and tools developed in this research are freely avail-
able through the GNU general public license (http://www.gnu.org/
copyleft/gpl.html) for the SWAT user community as well as for the
general public. They can be accessed through the following ftp link:
ftp://ftp.ihe.nl/SWAT-GRID/ with user name and password combi-
nations of ftpguest and fi3tsb3l, respectively.

1. Introduction

The availability of increasingly higher resolution input data for
socio-environmental models is certain to be computationally
demanding, especially for large spatial and temporal scale models.
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software is growing likewise (Bryan, 2012; Fernandez-Quiruelas
et al,, 2011; Goodall et al.,, 2011; Jeffery, 2007; Mineter et al.,
2003; Sulis, 2009). The endeavor being carried out by the EU/FP7
funded ‘EnviroGRIDS@Black Sea Basin’ project (hereafter, envir-
oGRIDS; http://www.envirogrids.net) attempts to enable large-
scale environmental and hydrological models to execute and
deliver results at near real-time. The project aims at building
capacities in the Black Sea region to use new international stan-
dards to gather, store, distribute, analyze, visualize and disseminate
crucial information on past, present and future states of this region
based on Grid infrastructures.

Grid computing originated in the 1990s as a metaphor for
making computer power as easy to access as an electric power grid
(Berman et al., 2003; Foster, 2003; Foster and Kesselman, 2004). As
such, a computing Grid is a distributed system that supports
a virtual research environment across different institutions (Chen
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et al., 2009; Schwiegelshohn et al., 2010). Another, task-oriented,
definition of computing Grid is that it is a group of loosely
coupled computers acting in concert to execute very large tasks.
Grid computing has advanced rapidly to take an appeal by major
institutes and projects worldwide. In recent years, Grids have
emerged as wide-scale distributed infrastructures that support the
sharing of geographically distributed, heterogeneous computing
and storage resources (Tsouloupas and Dikaiakos, 2007). Scientific
areas like particle physics, bioinformatics, nanotechnology, mete-
orology, and flow mechanics are few among research disciplines
benefitting from such infrastructures to run computationally
demanding workflows (Fernandez-Quiruelas et al., 2011; Huang
and Chang, 2003; Wegener et al., 2009).

Coordinated by CERN (the European Organization for Nuclear
Research) and funded by the European Commission through
a series of projects called EGEE (Enabling Grids for E-sciencE
projects I, Il and III), the Worldwide LHC Computing Grid (WLCG) is
currently the largest multi-science computing Grid. As of this
writing, the WLCG links about 260 resource centers in 55 countries,
with more than 150,000 CPU cores, 28 PB of disk storage, 38 PB of
tape storage, more than 14,000 registered users, and more than
300,000 jobs per day. The WLCG initially focused on two well-
defined application areas, Particle Physics and Life Sciences
mainly due to the fact that these communities were already Grid
aware and ready to deploy challenging real applications at the
beginning of the project. A range of applications is currently sup-
ported on the WLCG, and hydrological and environmental models
are no exception (Fernandez-Quiruelas et al., 2011; Lagouvardos
et al,, 2010; Lecca et al., 2011).

The WLCG, like other Grid infrastructures, has its own middle-
ware and access protocols. It demands the software to be run on its
environment to be developed in specified (parallelized) formats for
better computational efficiency on the Grid. Whereas new software
tools might be developed with these requirements in mind, legacy
scientific codes or existing applications (the majority of which are
not grid-aware yet) often require major code restructuring before
they can run on the Grid. The process of porting existing code to the
Grid is termed as “Gridification” by the Grid user community. A
“gridified” application can run on interoperable Grids. A gridified
application is aware of communication protocols for submitting,
starting and finishing jobs on the Grid.

For example, a gridified data analysis application will be able to:

e Obtain necessary authentication credentials to open files it
needs.

e Query a catalog to determine where the files are and which grid
resources are able to do the analysis.

e Submit requests to the grid: asks to extract data, initiate
computations, and provide results.

e Monitor progress of the various computations and data trans-
fers, notify the user when analysis is complete, and detecting
and responding to failures (collective services), and

e Gather all results and possibly merge output files to obtain the
final sets of result files.

Although institutional computing clusters can be used in certain
occasions to tackle computational challenges, for instance
(Whittaker, 2004), access to these clusters is generally very limited
for the user community. For widespread access to a very large
computational pool of computers, Grid computing is a foreseeable
distributed computing alternative for the scientific community.
This study discusses development of generic methods, tools and
techniques for parallelization of large scale hydrological models in
general, and SWAT models in particular, on a Grid infrastructure.
The study demonstrates experimental simulations using multiple

spatial and temporal scale models on the WLCG infrastructure.
With the objective of achieving a near-real-time computation on
large scale spatially distributed SWAT models, the study presents
formulation and test results of various approaches.

2. Materials and methods
2.1. The Soil and Water Assessment Tool (SWAT)

The Soil and Water Assessment Tool (SWAT)(Arnold et al., 1998; Neitsch et al.,
2005) is an increasingly popular watershed modeling software. It is a physically-
based model that can simulate water quality and quantity at a watershed scale.
The spatial scales of the problems analyzed with this modeling software have
increased to a remarkably large degree over time. The whole of continental USA
(Arnold et al., 1999) and the whole of Africa (Schuol et al., 2008) were modeled on
separate occasions using SWAT with commendable results. However, as model
extents and input data resolutions continue to grow, computation time becomes
a bottle-neck especially for repetitive model simulations.

SWAT can compute continuously on a daily or sub-daily time step. The model is
primarily designed to predict impacts of management on water, sediment, and
agricultural chemical yield in gauged and un-gauged basins (Arnold et al., 1998). The
major modules in the model include hydrology, erosion/sedimentation, plant
growth, nutrients, pesticides, land management, stream routing, and pond/reservoir
routing. Climate input files (precipitation, maximum and minimum temperature,
relative humidity, wind speed, solar radiation) are inputs on a daily temporal
resolution, although recent versions of the model allow hourly input files.

A watershed modeled using SWAT is partitioned into different required and/or
optional objects of subunits such as sub-basins, reaches/main channel segments,
impoundments/reservoirs on the main channel network and point sources. As such,
a watershed is subdivided into sub-basins which are, thus, the first level of the
subdivision. Sub-basins are defined by geographical positions in the watershed and
are spatially related to one another (Neitsch et al., 2011). All sub-basins drain into
river networks where water is routed from upstream to downstream reaches. The
land area in a sub-basin may be divided into HRUs (Hydrologic Response Units). A
sub-basin must contain at least one HRU and a main channel or reach. HRUs are
portions of a sub-basin that possess unique land use, management, or soil attributes
(Neitsch et al., 2011). SWAT setup provides options to choose HRU distributions in
a watershed or sub-basin. Theoretically, one or as many as unlimited number of
HRUs may be populated in a single sub-basin with unique land use/soil and
management combinations. Unlike in the case of sub-basins, no spatial relationship
or interaction can be specified among HRUs. Sediment, chemicals or nutrient
loadings from each HRU are computed independently and then summed up to
determine the total load from a sub-basin. (Note that defining more HRUs per sub-
basin implies a higher spatial resolution.)

A watershed model should also incorporate one reach or main channel associ-
ated with each sub-basin. This channel carries loadings from the sub-basin or
outflow from the upstream reach segments into the downstream network of the
watershed in the associated reach segment. An impoundment such as a pond or
a wetland may also be defined in a sub-basin.

2.2. Parallelization methods

The parallelization of SWAT models for Grid execution is analyzed using various
methods and approaches. The general methodology of this study can simply be
stated as: divide—compute—merge. In other words, it follows a general procedure of
dividing or splitting a large scale and/or high resolution model into several small
scale model components and computing them all in parallel on the Grid. After each
component finishes executing, outputs from each of them are collected and merged.
Results are presented similar to that of the original, undivided model.

Before proceeding with the actual work of splitting and merging, though,
various methodological questions should be addressed: a) On what level (e.g. sub-
basin, HRU or reach level) can one split SWAT models for optimal efficiency on
the Grid. b) Do we have to split all sub-basin specific information into independent
sub-basin/HRU files or can we still maintain some common input files for all the sub-
basins as they are in the original model? c) From which files do we retrieve relevant
information for parallel computations of such sub-basin level splits? d) What is the
advantage or disadvantage of splitting or maintaining those common input files? e)
Which parts of the SWAT computing code modules are irrelevant/relevant during
independent sub-basin computations?

Within a SWAT watershed model, sub-basin processes are computed indepen-
dently from each other; and, within a sub-basin, HRUs are computed independently
from each other and from other sub-basins as well. They are independent enough as
a basis for parallelization of SWAT models on the Grid. However, an HRU might be
too small to serve as a unit for splitting a big model into sub-components. All HRUs
within a sub-basin share the same weather input files (such as precipitation,
temperature, humidity, solar radiation, and wind speed) which can be the largest
model input files in SWAT. An HRU level splitting and merging, thus, would require
the split of these big input files, a practice certain to be computationally costly. In



S. Yalew et al. / Environmental Modelling & Software 41 (2013) 223—230 225

this study, HRU level parallelization was left out for speculative reasons that it may
increase the simulation overhead during splitting, merging and communication on
the Grid. On the other hand, the computation of a reach routing/loading depends on
outputs of the upstream reach and also of the associated sub-basin. In other terms,
downstream reaches incorporate loads from upstream reaches and also from sub-
basin processes associated with them, and thus are dependent on them. This kind
of dependency is sequential by design, a downstream reach may not proceed
computing until it gets initial conditions from the upstream. For the reason that
reach routing processes are highly interdependent in a SWAT watershed model, they
are disregarded as a basis of parallelization unit. Splitting at sub-basin level, thus,
seems the more viable option because sub-basins in SWAT are neither too inter-
dependent nor too small to serve as a unit of computation.

SWAT takes a number of required and optional input data about physical
(elevation, land cover, soil), weather (rainfall, air temperature, solar radiation, wind
speed, relative humidity), hydrological (stream flow, sediment transport, nutrient
loads), and point and non-point sources of pollution in a watershed. It accepts model
input data in three categories or levels of detail: watershed, sub-basin, and HRU.
These input data are stored in a number of files and databases. Some files carry HRU
level data (e.g. *.hru, *.mgt, *.gw, *.sol, *.chm, etc files), while some others carry data
related to sub-basins (e.g. *.sub, *.wgn, *.rte, *.swq, etc) and still others carry
watershed level data (e.g. the configuration (fig.fig), the master watershed (file.cio),
precipitation (*.pcp), temperature (*.tmp), etc files). For parallel simulation of the
sub-basin processes, relevant data (for instance, whether a sub-basin is upstream or
downstream from the ‘fig.fig’ file; number of simulation years, number and name of
HRU files associated with the sub-basin from the master watershed ‘file.cio’ file, etc)
are gathered for each sub-basin. Then, new configuration file is created for each sub-
basin in a unique directory where other sub-basin relevant files are copied into. The
watershed configuration file in Fig. 1(a) is split according to Fig. 2(a) for each sub-
basin in the first approach (Approach I) and according to Fig. 2(b) in the second
approach (Approach II). The first approach (Approach I) is that only the sub-basin
processes are run in parallel without the reach routing process, whereas the
second approach computes upstream reaches together with sub-basin processes.
Unlike the first approach, the second approach also executes merging of upstream
sub-basin results right after they finish computing rather than wait until every sub-
basin (including the ones in the downstream) finishes computing. Approach I
follows the principle of split, compute all sub-basin processes, then start routing the
reaches. On the other hand Approach II follows the principle of split, compute all sub-
basin processes and, at the same time, route and merge upstream reaches/sub-basins,
and then, route and merge the downstream ones.

For the SWAT model splitting process in this study, file duplication was preferred
to extreme file split. Short and computationally lightweight files are split to each sub-
basin whereas long record and heavy files are copied to each sub-basin directory for
processing. Since multiple file access and file processing (for example for files such as
precipitation and temperature which can be too heavy/long and too many) take more
time at a later stage when each sub-basin wants to use one, these files are split for
each sub-basin. The downside of duplicating files to each sub-basin is storage space
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consumption. However, with Petabytes of space on the Grid, the demand for storage
can be argued to be of smaller concern compared to the demand for speedup.

Watershed configuration in SWAT models is stored in a file called “fig.fig”. This
file consists of a number of “command lines” for each time step to be computed in
sequence. Among the most important command lines are “sub-basin” that computes
sub-basin processes, “route” that computes processes in a reach and “add” that sums
outputs from previous command lines. A typical structure of the ‘fig.fig’ file is given
in Fig. 1a, where the first block represent lines for the computations of the sub-
basins (7 in total), followed by a block with several “route” and “add” commands.
The latter represents the river network.

In the original SWAT code, the sequence of computation is as in Fig. 3(a), all sub-
basins, and all HRUs within sub-basins, are computed first, followed by main
channel networks/reaches. These computations are iterated for every day of every
year for the stated simulation period. Two approaches/configurations of paralleli-
zation are devised in this study. In a first parallelization configuration (Approach I),
all sub-basins are computed in parallel followed by all reaches in series (“Splitter1”
in Fig. 3b). In a second configuration (Approach II) (“Splitter2” in Fig. 3c), all sub-
basins and HRUs within sub-basins are computed first. Then, reaches of upstream
sub-basins are computed and merged in parallel to each other after their associated
sub-basins are computed, followed by the ones that depend on upstream reaches.
Approach |, therefore, is concerned only with parallelization of sub-basin processes
without affecting the sequential design of reach executions whereas Approach II
executes upstream reaches (reaches which do not depend on outputs of other
reaches) in parallel to each other with the associated sub-basin processes and merge
the results of which right after they finish executing.

2.3. Computing environment

Computing environment refers to the hardware, operating system and software
tools involving the parallelization experiment. Whereas the codes and tools are
tested only on the platforms mentioned here, they might as well be used in other
computing environments.

2.3.1. Hardware and operating system

Non-parallel runs were tested on AMD Phenom 9600B quad-core 2.3 Ghz
machine with 4 GB operating memory. The testing machines used for these
computations are run on Ubuntu 10.04 operating system whereas the Grid nodes
use distributions of Scientific Linux SLC4 and SLC5.

2.3.2. Software
In total, 6 existing as well as newly developed software programs were used:

(1) SWAT2005: is the original SWAT model code and it is used for computing the
sub-basins (as well as for routing of upstream reaches in the second
configuration).

Fig. 1. The “fig.fig" file (a) for the SWAT model of the Nzoia catchment (Kenya) (b) and the corresponding conceptual schematization for this file (c). Triangles represent a sub-basin

and the arcs represent reaches (c).
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subbasin 1 1 1
000010000, sub
save G 1 1 0
watoutl. dat
finish 0
a

subbasin 1 1 1.
000010000, sub

route 2 2 1 1
QO0010000, rteQd00l0000, Swq

save = 2 1 0
watoutl. dat

finish 0
b

Fig. 2. (a) The new configuration file for a single sub-basin without the routing and (b) with the routing. Note that the parallel routing configuration, Fig. 2(b), applies only for

upstream sub-basins/reaches.

(2) SWATgrid: is an adapted version of the SWAT model that reads output files
from the sub-basins run on the Grid, and executes the add/route commands to
compute the reach loadings. The difference between the original SWAT code
and this adapted version is that the adapted version is modified to block/
disable sub-basin process modules/computations and executes only the
routing of stream-networks.

Splitter1 and Splitter2: are python/java programs written for splitting generic

SWAT models into sub-basin scale model components. A number of files need

to be adapted for the model splitting purpose:

o fig.fig: this file is reduced to one command line for sub-basin computation
and one to save outputs to a file (Fig. 2a) in case of Splitter1. In the case of
Splitter2, it is reduced to one command line, one routing line, and one to
save outputs to a file (Fig. 2b).

e Precipitation (*.pcp), temperature (*.tmp) and other weather files are split
to contain data specific only to the associated sub-basin.

e Input files that describe or represent a sub-basin, including the SWAT
executable program SWAT2005, are copied to a directory created for each
sub-basin.

(4) SWATmerger.exe: is a (python/java) program written for merging sub-basin
computation results. It first initiates the SWATgrid program to compute the
reach routing. Major tasks of this program are to collect outputs from indi-
vidual sub-basin computations returned from each Grid node and to organize
them as if they were executed from a single machine.

(5) Ganga: is an existing python script (Moscicki et al., 2009) that serves as a user
interface for specifying and submitting jobs to a grid; it connects to a Grid,
submits files to Grid machines and copies results back to the PC of the user.

(6) Diane: is an existing lightweight distributed framework for parallel scientific
applications in master—worker model (Moscicki, 2003). It is used for an
automatic control and scheduling of computations on a set of distributed
worker nodes. It boosts execution efficiency, reduces work overhead through
automatic failure management, and integrates local and Grid resources. See
Fig. 4 for sequences of executions of the various tools/codes.

—
w

Original Sub-basins in parallel Sub-basins + tributaries in parallel

“Splitter1”

NAAAAA A

“Splitter2”

A

3 “Merger”
1) gs

“Merger”

wm&thAQQQQQQ:

~N O O W AN

a b c

Fig. 3. The original configuration “sequence” (a), splitting methods “Splitter1” (b) and
“Splitter2” (c).

3. Test models: setup and job submission

Three separate SWAT models were used for demonstration of
the parallelization process: the Nzoia catchment model in Kenya,
the Lake Balaton catchment model in Central Europe (Hungary) and
the trans-boundary Danube catchment model in the Black Sea
Basin (Fig. 5). The Nzoia catchment model, presented in Fig. 1,
includes 7 sub-basins and contains data to simulate 43 years. The
Lake Balaton catchment model contains 204 sub-basins with
a simulation period of 16 years whereas the Danube River Basin
model contains 423 sub-basins.

For the sake of conducting experiment with differences in
simulation periods, the Danube model was built with 5, 16 and 38
years of simulation periods, selected at random. Furthermore,
simulations of single and multiple HRUs per sub-basin were
experimented with each model. After these models where setup,
each of them where submitted to and managed on the Grid infra-
structure through the ganga and DIANE software tools.

Job submission using ganga involves scripts for specifying
properties of the job, such as whether job is an executable or not,
whether it is supposed to run locally or on a grid, and on which
back-end (infrastructure) it is supposed to be run, etc. Once these
properties are stated as shown in Fig. 6, one more simple command
[j.submit()] will be able to send the specified job to the EGEE/LCG
grid back-end.

The same way to the use of ganga, a piece of script must be
written to instruct the DIANE framework to manage jobs submitted
on the EGEE/LCG grid back-end. This script involves the description
to DIANE of what will be run, that is, executable or not, the number
of jobs, and the number of worker agents to carry out the compu-
tation management. A sample DIANE script is shown in Fig. 7. The
same script (saved as ‘swat.sh’ in this case) can be run on the DIANE
command line interface using the bash input executable variable:

$ diane-run swat.sh

The above command triggers DIANE master to check-
connection, prepare and copy input files to storage resources and
wait for another command from ganga to specify the job submitter
and the number of DIANE worker agents which the next command
will do:

>ganga LocalSubmitter.py —-diane-worker-number=4

This command will submit jobs to the Grid using ganga. The four
(4) worker agents, in this case, of DIANE will automatically split the
sub-basins submitted as jobs between each other and manage their
execution. The whole process, e.g., whether a job succeeds in
executing or fails to do so, can be monitored from the ganga
interface.

4. Results and discussion

First, each of the models were setup with single HRU per sub-
basin and tested computation time both with Approach I (where
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Split Models

Ganga &
DIANE

v
.
Merged results (Similar to SWATarid.exe
the original model results) SRS SWATMerger.exe

Fig. 4. Computation sequence of the various software tools.

Fig. 5. The Danube River basin.

all sub-basins are computed in parallel followed by all reaches in
series) and with Approach II (where all sub-basins and only
upstream reaches are computed in parallel, followed by down-
stream reaches). As shown in Table 1, the Nzoia catchment shows
a speedup ratio of 2.96 in computation (which means that this
execution setup is 2.96 faster than the original model if it was run
on a personal computer). The model for the Balaton Lake basin
gained a speedup of 1.4, whereas that of the Danube basin model
(with 5 years of simulation period) achieved a speedup of 1.04.
Review of results in Table 1 show that Approach I performed
worse, with the exception of the Nzoia catchment model, than the

original model setting which is run on a personal computer (PC).
This is mainly attributed to the large computing overhead involved
in this approach. Approach Il registers gains in computing for all the
three models, due to the reduction in overhead (and in spite of
increases in splitting and sub-basin execution time). Overhead,
here, is considered to be the wasted time from the moment the
model starts splitting to the time the last part of the model is
returned from the Grid.

On a second experiment, the three models were setup again
with multiple HRUs per sub-basin, other settings being the same.
As demonstrated by test results in Table 2, the Nzoia catchment

1n[1]:j=Job{()
In[2]:3j.name="SWAT"
In[3]:j.application=Executable ()

In[7]:j.backend=LCG ()

In[4]:j.application.exe=File('runswat.sh')
In[5]:j.inputsandbox=[File ('txtinout.tgz'),File('swat2009'})]
In[6]:j.outputsandbox=["'txtinout.tgz']

Fig. 6. A job specification script on ganga.
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# tell DIANE that we are just running executables
# the Executableldpplication module is a standard DIANE test application

from diane test_applications import Executabledpplication as application

# the run function is called when the master is started

rereee

default_m

endPoint
LAl

aster
= giop:tcp::22246
def run(input, config):

d = input.data.task_defaults
d.input_files ['swat.sh','txti
d.output_files ['txtinout.tgz'
d.executable 'swat.sh'

#

for i in range(l, 8):
t input.data.newTask ()
t.args [str(i)]

# input.data stands for run parameters

tasks which differ by arguwrents with the executable

nout.tgz']

]

Fig. 7. Job specification

model gained a speedup of 6.2. The Lake Balaton and the Danube
basin models achieved a speedup of 4.9 and 4.5, respectively. In this
scenario, both Approach I and Approach II performed better than
the original model setting for all the models, with Approach II
giving the largest gain in computation for all the models.

A final experiment was conducted by varying simulation years
for the Danube basin model. Three different simulation periods (5
years, 16 years, and 38 years) where selected at random and the
model was setup and tested for each case with both single as well as
multiple HRUs per sub-basin. Because of its apparent computing
advantage from the previous experiments, this time the models

script for DIANE.

were tested using only Approach II. Results (Table 3) show that the
Danube basin model gained a speedup of 1.04 (also shown in
Table 2) for 5 years simulation period, a speedup of 3.3 for the 16
years simulation period and a speedup of 4.7 for the 38 years
simulation period when run with single HRU per sub-basin. When
multiple HRUs per sub-basin are used, the same model shows
speedups of 4.6, 6.8, and 7.7 for the 5 year, 16 year and 38 year
simulation periods, respectively (Table 4).

The experimental results for nearly all cases show that
computing on the Grid results in considerable gain in computation
time. Approach II, which follows the principle of — split, execute—

Table 1
Computation times for the three models with single HRU per sub-basin.
Model # of sub-  Sim. HRUs per Computation time (s) Spd (b)?
basin ?;rrsl;)d sub-basin Orig. Approach I Approach II*
model spl SbE Mr OvH Tot spl SbE Mr OvH Tot
Nzoia 7 43 Single 32 1.2 14 22 6 10.8 14 16 18 4 10.8 2.96
(App II)
Balaton 204 16 Single 1355 62.7 1.2 21 2860 2926 63.1 14 13 902 968 14
(22.6 min) (47.7 min) (48.8 min) (15 min) (16.1 min) (App II)
Danube 423 5 Single 1335 341 1 4 2781 3127 343 13 14 935 1283 1.04
(22.25 min) (5.7 min) (46.4 min) (52.1 min) (5.72 min) (15.6 min) (21.4 min) (App II)
2 Spl = Splitting, SbE = Sub-basin Execution, Mr = Merging, OvH = Overhead, Tot = Total time, Spd(b) = the better speedup of the two approaches, min = minutes, App
Il = Approach II.
Table 2
Computation times for the three models with multiple HRUs per sub-basin.
Model  # of sub- Sim. HRUs per Computation time (s) Spd (b)?
basin ?;rrsl;)d sub-basin Orig. Approach I Approach II*
model spl SbE Mr  OvH Tot spl SbE Mr OvH Tot
Nzoia 7 43 Mult 2671 193 322 58 130.7 530 26 356 28 20 430 6.2
(44.5 min) (8.85 min) (7.1 min)  (App II)
Balaton 204 16 Mult 8388 398 311 87 2874 3670 403 347 19 958 1727 49
(233 h) (6.6 min) (5.2 min) (47.9 min) (1.02 h) (6.7 min) (5.8 min) (16 min)  (28.8 min) (App II)
Danube 423 5 Mult 8244 414 387 109 2995 3905 431 399 13 972 1815 4.5
(2.29 h) (6.9 min) (6.45 min) (49.9 min) (1.08 h) (7.2 min) (6.65 min) (16.2 min) (30.3 min) (App II)

2 Spl = splitting, SbE = sub-basin execution, Mr = merging, OvH = overhead, Tot = tota
approaches, min = minutes, h = hours, App Il = Approach I

I time, Mult = multiple HRUs per sub-basin, Spd(b) = the better speedup of the two
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Table 3
Single HRU computation times for the Danube basin model using Approach II.
Model # of sub- Sim. HRUs per Computation time (s) Speedup
basin pe.rlod sub-basin Orig. model Approach I
(yrs)
Spl SbE Mr OvH Tot
Danube 423 5 Single 1335 (22.3 min) 343 (5.72 min) 13 14 935 (15.6 min) 1283 (21.4 min) 1.04
16 Single 11,141 (3.09 h) 364 (6.1 min) 4 8 2956 (49.3 min) 3332 (55.5 min) 33
38 Single 15,532 (4.3 h) 388 (6.6 min) 5 16 2888 (48.2 min) 3297 (54.2 min) 4.7

2 Spl = splitting, SbE = sub-basin execution, Mr = merging, OvH = overhead, Tot = total time, Mult = multiple HRUs per sub-basin, min = minutes, h = hours.

Table 4
Multiple HRU Computation times for the Danube basin model using Approach II.
Model # of sub- Sim. HRUs per Computation time (s) Speedup
basin period sub-basin Orig. model Approach I
(yrs)
Spl SbE Mr OvH Tot
Danube 423 5 Mult 8244 (2.29 h) 431 (7.2 min) 399 (6.65 min) 13 942 (15.7 min) 1785 (29.75 min) 4.6
16 Mult 18,720 (5.2 h) 1092 (18.2 min) 678 (11.3 min) 19 960 (16 min) 2749 (43.7 min) 6.8
38 Mult 28,512 (7.92 h) 1782 (29.7 min) 948 (15.8 min) 24 954 (15.9 min) 3708 (1.03 h) 7.7

2 Spl = splitting, SbE = sub-basin execution, Mr = merging, OvH = overhead, Tot = total time, Mult = multiple HRUs per sub-basin, min = minutes, h = hours.

route—merge upstream, and then route—merge downstream — has
a clear computing advantage over Approach I mainly due to
considerable reduction in computing overhead. This is true even
when splitting and average sub-basin execution times are higher in
this approach.

In spite of reducing overhead, Approach II increases splitting
and average sub-basin execution times. This is due to the fact that
while Approach I does not split routing related files and commands,
Approach II does for every sub-basin. This increases splitting time
in Approach II for all the cases, however by a nominal margin. The
same procedure also increases average sub-basin computation time
because upstream sub-basins have to execute routing commands in
addition to other sub-basin processes carried out in Approach I
Merging time is reduced in Approach II because of the fact that
upstream sub-basins have already been merged on a one-step
procedure of execute-and-merge. What remains at the end of all
sub-basin execution, therefore, is merging the downstream sub-
basin results, which takes less time than merging all sub-basin
results.

Overall, lighter and smaller jobs (such as Nzoia, single HRU per
sub-basin) seem to get a higher priority on the Grid computing
nodes. On such cases, we saw that the average Grid computing
overhead falls to few seconds irrelevant of whichever of the two
approaches are used. A solid gain in computing is demonstrated
when larger (in model extent or simulation length) and high
resolution (e.g. multiple HRU per sub-basin) models are run on the
Grid. Since model splitting is a one-time procedure, the experi-
mental speedup results demonstrated so far can get even better
with some modeling procedures such as sensitivity and uncertainty
analysis efforts on the Grid which often require repetitive model
simulations.

5. Conclusion

The ‘gridification’ of the Soil and Water Assessment Tool
demonstrates the use of emerging Grid technologies and infra-
structures for hydrological and environmental modeling purposes.
Experimental results show a remarkable improvement of perfor-
mance in computation time. Large scale and time intensive
hydrological/environmental models with higher resolution (e.g.
multiple HRUs per sub-basin) and longer simulation periods make
the most of the Grid computing infrastructure. In addition to
reducing computation time, computing on the Grid also relieves

computer memory problems that often originate from running
large scale SWAT models on a personal computer. The major
bottleneck to even further gain in computation time is the over-
head during model splitting, communication between various
computing nodes, and merging of the different model result
components. However, various techniques and approaches fol-
lowed in this study (e.g. Approach II) to Grid job submission,
routing and model merging prove that computing overhead on the
Grid can be considerably reduced to an acceptable degree. The
authors believe that this research, as well as the tools developed
through it, can be used as a basis for the progress towards the use of
existing as well as emerging high performance computing tech-
nologies and infrastructures such as the Grid to time-intensive
socio-environmental models.
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