(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

OGC Compliant Services for Remote Sensing
Processing over the Grid Infrastructure

Danut Mihon, Vlad Colceriu, Victor Bacu,
Denisa Rodila, Dorian Gorgan
Computer Science Department
Technical University of Cluj-Napoca
Cluj-Napoca, Romania
{vasile.mihon, vlad.colceriu, victor.bacu,
denisa.rodila, dorian.gorgan} @cs.utcluj.ro

Abstract—The latest issues in simulating and analyzing differ-
ent Earth Science phenomena require the development of complex
algorithms, based on satellite images in different formats. The
main goal of this paper is to process these data in a standard
manner and to automatically publish the execution results by
using the latest Web Processing Services (WPS). The development
of these services needs to be slightly different when involving large
volume of data processed over the Grid infrastructure opposed to
standalone machines. This paper provides an implementation so-
lution of the WPS standard within the GreenLand platform, and
exemplifies it on the Black Sea catchment hydrologic modeling
use case.

I. INTRODUCTION

This paper concerns with the integration of the Web
Processing Services (WPS) into the GreenLand application [1]
that is built over the Grid infrastructure. The research is part
of the FP7 enviroGRIDS project [2], funded by the European
Commission through contract no. 226740.

GreenLand is a Grid based software application that op-
erates in the Geographic Information System (GIS) domain,
and it is used for geo-spatial data management and analysis,
satellite image processing, graphics/maps generation, spatial
modeling and visualization. In particular this application offers
support for three major case studies: Black Sea catchment hy-
drologic modeling, land cover/land use analysis of the Istanbul
geographic area, and the Rioni river hydrologic analysis [3].

By geo-spatial data we mean raster inputs such as satellite
images in different formats (e.g. Moderate Resolution Imaging
Spectro-Radiometer (MODIS), Landsat, Aster, etc.) and vector
inputs (e.g. ESRI shapefiles). These data are retrieved from
remote repositories or from the user’s local machine, and
converted into a GeoTIFF internal representation.

There are several objectives that are highlighted through-
out this paper: OGC WPS integration within the GreenLand
platform, the access mechanisms to the GreenLand WPS
services, and the interactive implementation of new geospatial
algorithms based on the WPS guidelines.

The first one proposes the integration of the Open Geospa-
tial Consortium (OGC) standards - WPS in particular [4] -
with the Grid infrastructure, where the GreenLand application
is the intermediate communication layer. The advantages of

Karin Allenbach"? Gregory Giuliani'"
"nstitute for Environmental Sciences, enviroSPACE
University of Geneva 1227 Carouge, Switzerland
*United Nations Environment Programme,
Global Resource Information Database
1211 Chatelaine, Switzerland
allenbach@unepgrid.ch, gregory.giuliani@unige.ch

performing this integration are: standardized data access and
processing, interoperability with external platforms, flexible
data models for storing and exposing the spatial information.

The WPS standard was successfully used in small scale
processing, where the computation complexity was not that
high. Different issues were encountered in cases of large scale
scenarios, where the standard does not provide enough details
about the geo-spatial data execution, monitoring, and results
presentation.

The three GreenLand case studies, described earlier, require
an intensive processing of a large volume of spatial data. All
these aspects motivate the usage of the Grid infrastructure and
the necessity of extending the WPS standard towards the Grid
platform.

The WPS package consists of a set of three services (Get-
Capabilities, DescribeProcess, and Execute) that are accessible
over the Web. Another objective of this paper is related with
the usage of these services: directly from the GreenLand
application, API access from external platforms, and browser
based access.

Usually the Execute service requires a list of mandatory
parameters, such as the path to the inputs data set that are
going to be used at runtime. In some cases this attribute is
hard to be written manually (e.g. in case of accessing the WPS
as a link given in the Web browser address bar). Instead an
automated generation of the path could be achieved from the
GreenLand application.

This is the main reason why the GreenLand-WPS integra-
tion is the most easy to use solution (against the three available
ones, described earlier), regardless of the users’ experience in
computer science domain. More details about these concepts
are going to be presented in the following sections.

The last objective of this paper is related to the possibility
of adding new WPS processes or updating the existing ones.
This is possible due to the PyWPS [6] tool that allows the
specification of each process as a Python script. The flexible
model of the extended WPS standard has an important role
in achieving this objective that aims to improve the platforms
interoperability, by re-using these algorithms (implemented on
external platforms) instead of developing them from scratch.

32|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

II. RELATED WORK

Different implementations of the WPS standard demon-
strated the benefits of this approach [5]. Small scale processing
is the common characteristic for all these solutions. When
using this standard for complex use cases, extra computation
resources need to be added. The most appropriate methods
are related to the distributed infrastructures, Grid and Cloud
in particular that offer high power computation and storage
resources.

There are several research studies of large scale applica-
tions development over the Grid [7], [8], [9] and Cloud infras-
tructures [10]. None of them experiments the WPS integration,
and use instead non-standardized executions.

The GreenLand platform also uses the Grid infrastructure
for parallel and distributed computations. What differentiates
it from the previous mentioned applications is the implemen-
tation of OGC-based mechanisms that allow a standardized
execution of spatial data. This means that the GreenLand
platform is able to interoperate with external systems for
sharing, processing, and visualizing of spatial data.

The majority of Earth Observation researches recommend
standard access to geo-spatial data. Article [11] provides a
proof of concept solution for executing the spatial data on
certain backend infrastructures, by using a mediation approach.
The paper [12] proposes an integration of the WPS standard
with the Cloud infrastructure by using the Hadoop Map-
Reduce model.

This paper describes the integration of the WPS standard
directly within the GreenLand platform that allows the pos-
sibility of developing complex use cases in an interactive
manner, closely related to the human natural language. This
approach differentiates from the previous mentioned solutions,
and allows user access to these features, without the need
to have background knowledge related to computer science
domains.

There are multiple frameworks that implement the WPS
standard. The 52n WPS version could be used for deploying
services on standalone machines. It provides a standardized
access to data, and allows the creation of new processes
through the Development Kit that was integrated in the last
release. It uses the R language for implementing the geo-spatial
algorithms [13].

Degree WPS [14] is another framework that implements
this standard. Currently it is integrated with some of the most
known spatial data processing applications, such as Sextante
[15]. The Geographic Resources Analysis Support System
(GRASS) library [16] is used for implementing different geo-
spatial algorithms, and it is used especially on standalone
machines.

The PyWPS [6] is a Python based framework that uses
the GRASS library for describing the geo-spatial features.
On the other hand it offers the possibility to access remote
services that provide the same types of algorithms. Because the
GreenLand platform uses the GRASS library for the operators’
development, the PyWPS implementation was adopted as sup-
port for accessing and executing these operators by following
the WPS standards.

III. OGC STANDARD GENERAL OVERVIEW

The rules and guidelines of data sharing represent the basis
for several standards organizations that put them into practice
in the GIS domain fields. According to these issues, they
manage to increase the interoperability between systems and
geo-spatial data.

There are several standards that are related with the GIS
system (e.g. Open Geospatial Consortium OGC [4], Interna-
tional Organization for Standardization ISO [17], Spatial Data
Transfer Standard SDTS [18], Organization for the Advance-
ment of Structured Information Standards OASIS [19]), but for
spatial data management the most important ones are OGC and
ISO.

The Open Geospatial Consortium (OGC) is a non-profit
organization that provides guidelines for service oriented spa-
tial data processing and visualization. Based on these stan-
dards, the developers are able to create interoperable services
for information access and information exchange, but also
complex data structures that could be accessible to a large
number of applications. The goal of the OGC organization
is to provide standards for developers and users in order to
produce services for accessing spatial data, and to assure that
geo-spatial interoperability:

e Allows the creation of standards (integrated into daily
processes) regarding spatial data computing;

e Facilitates interoperability between GIS applications;

e Facilitates the implementation of open architectures.

Without interoperability and standardization, data access
and data exchange is really difficult among organizations. In
general, any Web service must have the ability to describe
its own capabilities, enabling this way other services and
products to interoperate based on its standard functionalities.
The OGC usage allows this process flow between different
GIS software applications without the need to develop new
translation mechanisms to assure their interconnection.

There are several OGC standards that are commonly used
for accessing, visualizing, analyzing, and processing data
throughout Web services:

e Web Map Service (WMS): defines a Web interface that

allows geo-referenced data retrieval as map layers. For
security reasons the WMS service does not give access
to the real data, but instead it creates different layers
representation (e.g. JPEG, PNG, TIFF) of this data.
The WMS interface is a three-steps process that
consists in the following operations: GetCapabilities
(exposes the service functionalities and lists all its
available layers), GetMap (produces a map based on
the selected layers set), and GetFeaturelnfo (returns
information about the generated map content).
For each WMS request there are lists of mandatory
and optional parameters. The response is an XML file
that contains information about the service and the
data availability;

e Web Feature Service (WFS): it allows features re-
trieval and management using the GML format. It is
intended to be used only for vector datasets, while the

33|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

WCS works mainly on raster images. The WFS inter-
face is a thee-steps process: GetCapabilities (similar
to the one described for WMS), DescribeFeatureType
(defines the structure of the feature), and GetFeature
(returns the response encoded with GML schema).
There are two implementations of this standard: basic
WES and transactional WES. The first one is used
to query and to retrieve features, while the WFS-T
provides services for features creation, deletion, and
update;

e Web Coverage Service (WCS): provides standardized
access to raster datasets. Like the rest of the OGC
services, the WCS interface consists in three types
of requests: GetCapabilities, DescribeCoverage, and
GetCoverage. Based on the XML result, generated
by the GetCapabilities, the user is able to select and
download data for a specific area of interest. The
area’s geographic coordinates, image format, width,
height, and projection are a few of the mandatory
fields required by this service;

e Web Processing Service (WPS): besides data acces-

sibility, the OGC standard also provides geo-spatial
data processing services through the WPS interface.
It allows users to: know what processes are available,
to select the proper input data, to create and run
different models, to perform management operations
to the output results, etc.
As any OGC standard implementation, it includes
three types of operations: GetCapabilities (returns a
list of the service capabilities together with all its
available processes), DescribeProcess (for each pro-
cess it provides a general description of the parameters
and their types), and Execute (performs the process
execution. It does not offer tools for monitoring the
execution progress, and once the result is available it
is send to the user);

e Simple Features SQL (SFS): It is an open standard
that offers rules and guidelines for storing, querying,
updating, and retrieving geo-spatial features from SQL
databases. SFS establishes an architectural frame-
work for features representation, provides syntaxes
for defining geometric attributes attached to those
features, and describes a set of geometry types in order
to ease the data exchange processes.

The GreenLand platform implements the majority of the
previous mentioned services (WMS, WCS, and WPS), but this
paper offers details only about the Web Processing Service.

IV. SYSTEM RELATED ARCHITECTURE

This section describes the concepts, the solutions, and the
technologies involved throughout the experiments of integrat-
ing the WPS standard within the GreenLand platform. The
high power computing resources are crucial in optimizing the
processing of large volume of geo-spatial data [20].

In order to fulfil the three objectives proposed in this paper,
a combination of multiple tools and technologies (Figure 1)
was performed, such as: the Grid infrastructure for geo-spatial
data processing, the OGC services for standardized data access

and specification, PyWPS that acts like a middleware between
the WPS Execute operation and the hardware platform, the
GreenLand together with the gProcess and GRASS libraries
that provides a framework for developing and using the WPS
related services.

The Grid infrastructure could be defined as a worldwide
computer network that offers parallel and distributed support
for storing and processing large volume of data [21].

A. WPS general overview

The Open Geospatial Consortium (OGC) is a non-profit
organization that provides guidelines, rules, and software API,
recognizable throughout the entire geo-spatial community.
Based on these standards, the developers are able to create
interoperable services for information access and information
exchange, but also complex data structures that could be
processed by a large number of applications [4].

The OGC Web Processing Service allows standardized
access to data and geo-spatial algorithms, by using the Web
technologies. There is a list of mandatory parameters that must
be attached to each such service. The inputs and outputs lists,
type of request, version of the WPS, and the unique identifier
for the algorithm are the most frequently used.

The WPS standard includes three types of operations, ac-
cessible as URLs: GetCapabilities, DescribeProcess, and Exe-
cute. The GetCapabilities is used for obtaining certain informa-
tion about all the available services. This information is packed
within an XML metadata document that specifies their identi-
fiers, name and description, the provider, the type of projection,
etc. The URL http://<server_domain>/wps/wps.py?service
=wps&version=1.0.0&request=GetCapabilities can be used to
exemplify this operation.

The <server_domain> represent the URL location of the
PyWPS server. The service, version and the request parameters
are mandatory for all WPS operations and are used to identify
the OGC standard (WPS in this case) and its implementation
version.

For detailing a particular service, the DescribeProcess
operation should be used. Based on the unique identifier,
the inputs and outputs lists for the algorithm could be re-
trieved. The URL associated with this operation has the fol-
lowing structure: http://<server_domain>/wps/wps.py?service
=wps&version=1.0.0&identifier=NDVI&request=Describe
Process.

The identifier parameter is needed only for the De-
scribeProcess and the Execute operations that are closely
related with a specific process.

The last operation allows the execution of a
certain process, based on a well-defined list of
inputs data set. One such example is given bellow:
http://<server_domain>/wps/wps.py ?service=wps&version=1.
0.0&identifier=NDVI&datalnputs=[inputl=valuel; input2=
value2; ...;inputn=valuen]&request=Execute. = For this
operation, the URL structure is more complex, because it
involves the specification of a valid path to the input data that
is stored locally or on remote repositories.

34 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

| Users

A

| Web browsers | | External platforms |

v

3
v

PYWPS

v v

Greenland platform

| Geo-spatial operators |

a

v

| WPS services implementation |

L.j

gProcess platform

Tasks scheduler |

A 4

| GRASS library |

Fig. 1. System related architecture

B. Modules interconnection and characteristics

The PyWPS is a software application, written in Python
programming language that implements the WPS standard. It
offers the possibility to access HTTP services that contain
different geo-processing algorithms. On the other hand, the
PyWPS also allows the direct access of GRASS functions.

In cases of executing large scale scenarios, the direct usage
of the GRASS features is not enough. The GreenLand platform
addresses such complex use cases that need tens of minutes
for completing their execution. This is the main reason why
a new algorithm development method was implemented that
uses the PyWPS for accessing them over the HTTP protocol.

The gProcess tool [22] could be defined as an intermediate
layer between the GreenLand platform and the Grid infras-
tructure. All the geo-spatial algorithms within this platform
are transcoded at runtime as nodes of a workflow (graph).
Using this data model, it is easier to execute and monitor the
processes launched over the Grid infrastructure.

The gProcess platform is used for scheduling the tasks over
the worker nodes of the Grid. In this case, each node of the
workflow is considered to be a task. This process involves
the placement of all tasks within a queue and dynamically
deploys them on the Grid CPUs. When the number of tasks is
greater than the number of available hardware resources, the
gProcess scheduler waits until one of the worker node finishes,
and assigns it with another task. The execution of the entire
workflow is completed when all its inner nodes (tasks) are
successfully processed.

The gProcess also offers a monitor mechanism that pro-
vides to the users information about the status of the execution.
Based on this feature the users are able to remotely control the
Grid executions.

The geo-spatial algorithms within the GreenLand platform
were implemented based on the functionalities provided by the

| Tasks monitor |

?

[
!

Grid infrastructure

GRASS library. Currently, this library consists of more than
400 data processing modules that are organized in several cate-
gories: vector, raster, image processing, database management,
etc.

The GRASS product uses the GDAL and OGR libraries
[23] for data conversion between multiple types. GRASS
modules could be accessed based on command line instruc-
tions. This way it is easier to integrate them with other GIS
applications [16].

Figure 1 highlights how the previous mentioned compo-
nents are related to each other. The WPS standard is imple-
mented through the PyWPS server that could be accessed in
three ways: directly from browsers by using the URL structure,
from external platforms based on the API provided by the
server, and from the GreenLand application.

Integrating the WPS with the Grid infrastructure generates
issues that are not encountered in the traditional usage of the
standard:

Create a flexible data model that allows the devel-
opment and the maintenance of the WPS processes.
In order to deal with this issue, the PyWPS tool
was chosen. It provides the possibility to access (via
HTTP) remote algorithms that describe complex use
case scenarios. The Python script is simple, and in-
cludes definition of the inputs and the output of the
process.

The remote algorithm (resident on the GreenLand
platform) is the core of this flexible data model. The
Python script is not affected when this algorithm
changes its inner functionality, but only in cases in
which the inputs or the output parameters are updated;

In traditional usage of the WPS services, the data
security is not that important. On the other hand,
the Grid infrastructure filters its users, and offers

35 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

the execution rights only to the ones that have valid
certificates, emitted by a Certification Authority (CA).
This security issue is solved at the GreenLand plat-
form level, where only users with valid credentials
are allowed to use its functionality;

e Usually the time required to execute a WPS process is

not that high. This gives the possibility of presenting
the output result to the user almost instantaneously (in
the same request-response loop).
Processes that use the Grid infrastructure, demand
powerful computing resources, and their execution
take a long time to complete (e.g. tens of minutes). As
seen, there is no possibility to provide an immediate
final result to the user. Instead the GreenLand applica-
tion periodically interrogates the execution status, and
when completed, it offers the user the possibility to
download the result, based on an URL address.

V. IMPLEMENTATION

This section describes the relationships between the com-
ponents from Figure 1, and tries to provide the best solutions
to different issues that arose on the way. The implementation
of the WPS standard, within the GreenLand platform, is a 7-
steps process that symbolizes each phase with a filled circle,
like in the previous figure.

The first step represents the user authentication within the
GreenLand platform, by using the username and password
credentials. Once the user is authenticated, it is assigned with
a valid Grid certificate that could be used for later executions.

The GreenLand platform, among other functionalities, pro-
vides a list of geo-spatial operators that were developed by
using the GRASS library. These algorithms are from different
Earth Science domains, and prove to be useful for: land
cover/land use analysis (e.g. NDVI, Accuracy assessment,
Density slicing, etc.), hydrologic modeling (e.g. Black Sea
catchment use case study), atmospheric pollution, etc.

By default, the execution of these operators does not
involve the WPS standard. Instead it is performed on a regular
basis, by submitting Grid jobs through the gProcess platform in
a non-standardized manner. This type of execution corresponds
to the following sequence of steps: 1, 6, and 7 (see Figure 1).

One of the objectives of this paper is to prove that the
WPS standard could be successfully used within the Grid
parallel and distributed executions. Steps sequence: 1, 2, 5,
and 7 represent an alternative WPS scenario for non-standard
execution of the GreenLand processes. The main difference
from the previous execution method is the involvement of the
PyWPS server that allows the implementation of the WPS
standard.

A. Creation of a new WPS process

The PyWPS is used for describing a standardized access
method to the GreenLand operators. It uses Python scripts that
allow HTTP invocation of remote services, and it consists of
four sections (Algorithm 1):

e Header (lines 1-8): contains the information about the
process, such as the unique identifier, the title and

Algorithm 1 PyWPS exemplification for the NDVI algorithm

1: WPSProcess.__init__(self,
: identifier = "NDVI”,

2

3 title="NDVI process”,

4: abstract="Computes the NDVI index.”,
5: version = 1.0,

6 storeSupported = True,

7 statusSupported = True,

8: grassLocation = False)

9: self.NIR = self.addLiterallnput(

10: identifier=""nirBand”,

11: type=type(””),
12: title="NIR band input;image/tif”)

13: self.Red = self.addLiterallnput(

14: identifier="redBand”,

15: type=type("”),

16: title="Red band input;image/tif”’)
17: self.Result = self.addLiteralOutput(
18: identifier = “result”,

19: title="Output result”,

9999

20: type=type("”))

21: data=urllib.urlopen(’http://cgis2ui.mediogrid.utcluj.ro/GreenL

22: andv2/executeChain&process="NDVI”&inputs=[{

23: “type”:"tif”, “value”:”” +self. NIR.getValue()+' "},

24: {"type”:tif”,’value”:+ "’ +self Red.getValue()+'”’}]).
25: read()

26:

27: self.Result.setValue(data)

description, an attribute that indicates the usage of
GRASS code within the script, etc.;

e Specification of inputs (lines 10-17): the name, de-
scription, and the type represent the minimal set of
parameters that need to be specified for each input.
There are two available types: literalData and com-
plexData. The first one is used for sending numerical
values, strings, or Boolean operators. The second type
is used when the input requires the byte array of a
local or a remote data source;

e Specification of the output (lines 18-21): has the same
data structure as the input section;

e The body section (lines 23-29): depending on the
value of the grassLocation parameter, this section
contains GRASS functions, or a method that performs
a remote service call to the GreenLand operators.

The Normalized Difference Vegetation Index (NDVI) is a
common algorithm used in the classification of the land use/-
land cover from different geographic areas. Its implementation
is given in Algorithm 1, and it uses the following formula in
order to perform the classification process:

NIR — Red
NDVI = NIR+ Red)

As can be seen there is a perfect match between this

formula and the Python script defined in previous algorithm.
The two inputs of the algorithm represent different types of

36 |Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

satellite images, converted to GeoTIFF [24] by the GreenLand
platform.

Usually, a satellite image contains several spectral bands.
The NDVI algorithm uses the Red and NIR bands in order to
create the classes of the land cover. The result of this operator
generates a single-band satellite image that is available for the
user to download and to perform further analysis.

After specifying the inputs and output, the Python script
invokes a remote service (executeChain) that is hosted on the
GreenLand platform. This service contains the actual imple-
mentation of the NDVI formula, while Algorithm 1 provides
only a standardized access to this service. The invocation
is done by using the HTTP protocol, and attaches the two
parameters as additional arguments. It is worth mentioning that
the nirBand and redBand identifiers store the full path to the
physical resources that are going to be used at execution time.

B. WPS access types

The processes provided through the PyWPS server have
three access modes: directly from the GreenLand application,
API access from external platforms, and browser based access.
The first mode assumes that the user is authenticated at the
GreenLand level, and has access to all its geo-spatial operators.
Within this platform, the user has the possibility to select
one of these algorithms and to specify its inputs. After that
it can establish a bidirectional communication channel with
the PyWPS server (step 2 of Figure 1):

e PyWPS — GreenLand platform: the user is able to
interrogate the list of existing processes (GetCapabili-
ties) and to visualize the detailed description for each
of them (DescribeProcess);

e GreenLand platform — PyWPS: in order to start a
new processing over the Grid infrastructure, the user
is able to invoke the Execute WPS operation. The
inputs selected by the user have to be sent as additional
parameters to the Python script that further passes
them to the executeChain service that starts the Grid
processing.

In some cases the inputs path to the physical resources
involves a complex combination of folders and files. In such
situations there is a high probability of introducing syntactical
errors while specifying these paths manually.

The main advantage of accessing the WPS processes from
the GreenLand platform is that it leaves no space for such
errors. The user is provided with a list of aliases, instead of
the real names of the satellite images. After selecting one input,
the system generates in the background the entire path to that
resource, and sends it to the PyWPS server.

The WPS processes could also be accessed directly from
the browser (step 3 of Figure 1), by using its URL address.
The main disadvantage is that the user has the full control in
building the URL, including the paths to the input resources.
Errors may occur in these cases, and the system is not able
to provide specific support. This is the main reason why this
paper recommends the usage of the first access method of the
WPS services.

Using external platforms for invoking the PyWPS pro-
cesses (step 4 of Figure 1) represent the third accessibility
mode. It is similar with the GreenLand-WPS mechanism, but
it lacks of some important features: the customized version
of the metadata retrieved by using the GetCapabilities and
DescribeProcess operations, the access to the GreenLand geo-
spatial data repository, and the automatic generation of the
input paths.

All accessing modes from Figure 1, are bidirectional. The
connection to the PyWPS is used when invoking the Execute
WPS operation, while the connection from the PyWPS is
required to expose information about the available services (as
metadata) by using the GetCapabilities and DescribeProcess
operations.

C. WPS execution over the Grid infrastructure

After the PyWPS receives an Execute request with the
proper inputs data set, it identifies the process and invokes
the executeChain service that in his turn calls one of the
algorithms (e.g. NDVI) available in the GreenLand repository.
At this stage (step 5 from Figure 1) the next action is to
use the gProcess platform in order to partition the geo-spatial
algorithm into atomic tasks, and to schedule them to different
Grid worker nodes.

At runtime, the process enters several stages: submitted,
running, completed, and cancelled. The first stage allocates a
specific number of Grid computing nodes, and sends the tasks
together with their additional dependencies to these physical
machines.

The running stage is identified as the actual Grid execution,
where each node processes a task or a group of tasks. If the
tasks are related between them, when an intermediate result is
generated, it is used as input for other tasks.

When all intermediate results are available, the entire
execution of the algorithm is completed. At this point, the
user is able to access the results in a standardized manner, by
using the WPS operations.

In cases in which errors occurred in the Grid based
processing of the geo-spatial algorithms, the cancelled status is
displayed. For such situations, the recommendation is to restart
the execution.

In traditional WPS usage most of the algorithms need a
relatively small amount of time to finish their executions (e.g.
a few seconds). This allows the system to provide the WPS
execution result almost instantaneously. On the other hand,
the GreenLand platform addresses large scale use cases that
require tens of minutes of Grid processing. Because of this
aspect, a monitoring module was implemented at the gProcess
level that periodically notifies the PyWPS server about the
status of the execution.

The monitor module displays a “Not executed” message
or a valid URL from where the user is able to download
the results. If the WPS in integrated within the GreenLand
platform, this link is masked under the shape of a download
button. In case of direct browser access the URL in display as
plain text. When accessing the PyWPS services from external
platforms, the metaphor of downloading the result should be
customized by certain criteria.

37|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

VI. EXPERIMENTS

This section describes the standardized execution of the
Mosaic algorithm, exemplifying at each step the implemen-
tation details, from the GreenLand perspective. This proof of
concept experiment is related to the validation of integrating
the WPS standard within the Grid based execution processes,
by using the GreenLand platform as an intermediate level.
In conclusion, the experiment does not aim to measure the
performance of the Grid processing, but only to validate the
proposed solution.

A. Experiment description

The Mosaic is the core algorithm of the Black Sea catch-
ment hydrologic modeling use case, which generates the shape
of the entire geographic area of this catchment, by merging
multiple tiles one to another. These tiles represent single-band
satellite images of MODIS products (MOD15 and MODI16 in
particular) that are extracted at runtime, based on the users’
requests [3].

These products are multi-layers stacks of 1 km resolution
provided on 8-days basis, where the maximum file size is 5.8
Mb for each. The spatial data is stored in large repositories,
such as Numerical Terradynamic Simulation Group (NTSG)
that offers remote access to the geo-spatial information, via
File Transfer Protocol (FTP) protocol. New measurements are
added periodically by means of satellite sensors that provide
raw data that is pre-processed and then inserted into these
repositories.

For an easier identification of these data, the NTSG consor-
tium partitioned the Earth surface into horizontal and vertical
tiles. For this experiment only the tiles that cover the Black
Sea catchment are needed. The MODIS data is organized in
years, starting from 2000 until the current time. Because it
is an 8-days temporal resolution product, each year contains
day-folders (e.g. D001, D009, D0017) indexed from 1 and
increasing up to 361.

Taking into account all these aspects, the Mosaic im-
plementation requires an automatic data retrieval script that
transfers at runtime the relevant information from remote
repositories to the Grid worker nodes.

B. Selecting the inputs data set

Before executing a WPS process, the user has to query the
list of available services. This is possible by performing the
GetCapabilities request that will return a XML metadata file.
Due to the lack of space, Figure 2 highlights only a fraction of
this document that contains the description of the processes.
Among other details, the metadata contains information about
the provider of these services and the Web addresses to the
WPS operations.

In order to perform the experiment, the Mosaic process
is going to be selected. The next step is to get a detailed
description of its inputs and output, by using the DescribePro-
cess request. The ows:Identifier attribute is used as a unique
identifier of the process.

The product type (MOD15 or MOD16), a list of bands for
each product (e.g. Evapo-transpiration - ET, Leaf Area Index

<wps:ProcessOfterings>
<wps:Process wps:processVersion="1.0">

<ows:Identifier>NDVI</ows:Identifier>
<ows:Title>NDVI process</ows: Title>
<ows:Abstract>Computes the NDVI </ows:Abstract>

</wps:Process>

<wps:Process wps:processVersion="1.0">
<ows:Identifier>Mosaic</ows:Identifier>
<ows:Title>Mosaic process</ows:Title>
<ows:Abstract>Computes the Mosaic</ows:Abstract>

</wps:Process>

</wps:ProcessOfferings>

Fig. 2. GetCapabilities metadata file

<Datalnputs>
<Input minOccurs="1" maxOccurs="1">
<ows:Identifier>year</ows:Identifier>
<ows:Title>Year</ows:Title>
<LiteralData>
<ows:DataType ows:reference= "http://www.w3.
org/TR/xmlschema-2/#string"> string </ows:DataType>
<ows:AnyValue/>
</LiteralData>
</Input>

</Datalnputs>

Fig. 3. DescribeProcess metadata file for the Mosaic workflow

- LAI), and the processing year (e.g. 2000, 2001, ..., until
current year) are the input parameters that are requested by
the WPS Mosaic process. For a better understanding of this
action, Figure 3 highlights the structure only for the year input
of the process.

The GreenLand platform is able to parse the DescribePro-
cess metadata, and to present it to the user in a more user
friendly manner, by means of combo boxes, check boxes,
buttons, dynamic text, etc.

The next action is to initiate the Grid execution, through
the PyWPS server. This is possible by using the WPS Execute
operation. The URL of this action is automatically generated
in the background, based on the values selected by the user at
the graphical level of the GreenLand application.

Let’s assume that we want to process the LAI band from
the MOD15 product, ET band of the MODI16 product, and
set the processing year to 2010. The URL for the Execute
operation has the following structure: http://<server_domain>/
wps/wps.py?service=wps&version=1.0.0&identifier=Mosaic&
request=Execute&datainputs=[year=2010;mod 15=LAI;mod16
=ET]. The <server_domain> represents the URL location of
the PyWPS server, while the datainputs field contains all the
parameters specified by the user.

C. Grid based execution

The Execute request is received by the PyWPS sever that
interprets it, and assigns each parameter from the datainputs

38|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

to local variables in the Python script. Such an example was
described in Algorithm 1 for the NDVI process.

The Mosaic is a GRASS based algorithm that is resident
on the GreenLand platform. Once the WPS execution request
reaches the PyWPS server, it is redirected to this geo-spatial
algorithm. Among the inputs list, additional information needs
to be sent, such as: a unique identifier, a short description, the
type required for each input together with its entry from the
GreenLand database.

Until this stage, the Mosaic experiment was performed
based on the rules and guidelines provided by the WPS
standard. The next steps represent the actual Grid execution
that is outside of the standard scope. This execution starts
at the gProcess level that is responsible for partitioning the
Mosaic algorithm into atomic tasks.

The one year processing contains multiple executions of
data with a time delay of 8 days (the NTSG data repository
updates every 8 days with new satellite images). So, in one
year we have 365 days that divided by 8, results 45 executions.
Because the user selected two MODIS products (MOD15 and
MOD16) there will be 90 independent executions.

Allocating one Grid worker node for each task is not
efficient, because its execution is not that time consuming.
In order to optimize the entire processing flow, the gProcess
platform creates groups of nine tasks, where each group is
going to be executed on a single worker node.

After scheduling the entire Mosaic process, transferring
the data to each Grid machine is the next step. Initially, data
is resident on remote repositories and needs to be copied
at runtime to the worker nodes. These repositories contain
horizontal and vertical data tiles that cover the entire Earth
surface. For this experiment only 12 tiles (the ones from the
Black Sea catchment area) are needed.

Each of the 90 executions will process all 12 tiles, where
their results will provide a good indicator for hydrologic
prediction in the Black Sea catchment region.

Usually, the Mosaic process requires two hours to complete
its execution. During this time, the user needs to know the
status of the Grid execution. The gProcess platform provides a
monitor mechanism that periodically interrogates the execution
state, and sends the feedback to the GreenLand platform that in
its turn displays it to the user in an easy to understand manner.

When the Grid execution completes, the user is able to
download the results or to perform further operations. Figure 4
presents one of the results generated by processing the Mosaic
algorithm that is partitioned into 12 tiles that cover the Black
Sea catchment geographic area.

VII. CONCLUSIONS

This paper aims to integrate the WPS standard for exe-
cuting the GreenLand algorithms over the Grid infrastructure.
The Mosaic experiment proofs that this approach is valid and
could be extended for other types of algorithms.

The other two objectives (different WPS access modes
and the flexible implementation of WPS processes) were
also described, by highlighting the possible implementation
solutions.

Fig. 4. The result generated by the Mosaic operator

The OGC consortium does not offer enough implementa-
tion details for all situations. For example, applying the WPS
standard in Grid computing is difficult due to the fact that the
Grid infrastructure allows only authenticated users to perform
different operations. One recommendation is to extend the
current standard to also enhance these use cases.

ACKNOWLEDGMENT

This research is supported by the enviroGRIDS Project
funded by the European Commission, through the Contract
226740.

REFERENCES

[1] D. Mihon, V. Colceriu, FB. Balcik, K. Allenbach, M. Gvilava, D. Gor-
gan, “Spatial Data Exploring by Satellite Image Distributed Processing”,
Geophysical Research Abstracts, EGU General Assembly 2012, vol.14,
pp.13278, 2012.

[2] enviroGRIDS project,
http://envirogrids.net/

[3] B.F. Bektas, C. Goksel, S. Sozen, K. Allenbach, M. Gvilava,
K. Rahman, D. Gorgan, D. Mihon, ”“Remote Sensing
Services - ESIP Platform and Hot Spot Inventory Case
Studies”, enviroGRIDS Deliverable D2.11, 2012. Available at:
http://envirogrids.net/index.php?option=com_jdownloads&Itemid=13
&view=finish&cid=139&catid=11

[4] Open Geospatial Consortium, (2007), "OpenGIS Web Service Common
Implementation Specification”, pp.1-153.

[5S] L. Diaz, C. Granell, M. Gould, "Case study: Geospatial Processing
Services for Web- based Hydrological Application”, Book chapter:
Geospatial Services and Applications for the Internet, pp.31-47, 2008.

[6] J. Cepicky, "PyWPS 2.0.0: The Presence and the Future”,
Geoinformatics, 2007,
http://geoinformatics.fsv.cvut.cz/gwiki/PyWPS_2.0.0:_The_presence_and
_the_future

[71 G. Aloisio, M. Cafaro, ”A Dynamic Earth Observation System”, Parallel
Computing, vol.29, pp.1357-1362, 2003.

[8] D. Gorgan, V. Bacu,T. Stefanut, D. Rodila, D. Mihon, ”Grid Based
Satellite Image Processing Platform for Earth Observation Application
Development”, Workshop on Intelligent Data Acquisition and Advanced
Computing Systems: Technology and Applications, pp.247-252, 2009.

[9] D. Gorgan, V. Bacu, D. Mihon, D. Rodila, T. Stefanut, K. Abbaspour, P.
Cau, G. Giuliani, N. Ray, A. Lehmann, ”Spatial Data Processing Tools
and Applications for Black Sea Catchment Region”, International Journal
of Computing, vol.11 (4), pp. 327-335, 2012.

39|Page

www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
EnviroGRIDS Special Issue on “Building a Regional Observation System in the Black Sea Catchment"”

[10] Y. Wang, S. Wang, D. Zhou, "Retrieving and Indexing Spatial Data
in the Cloud Computing Environment”, 1st International Conference on
Cloud Computing, pp.322-331, 2009.

[11] G. Giuliani, S. Nativi, A. Lehmann, N. Ray, "WPS Mediation: an Ap-
proach to Process Geospatial Data on Different Computing Backends”,
Computers and Geosciences, vol.47, pp.20-33, 2011.

[12] Z. Chen, N. Chen, C. Yang, L. Di, "Cloud Computing Enabled Web
Processing Service for Earth Observation Data Processing”, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol.5, pp.1637-1649, 2012.

[13] A. Wytzisk, M. Gould, F. Holsmuller, "Research and Instruction Mixing
Commercial and Open Source Tools”, 14th Workshop AGILE Interna-
tional Conference on Geographic Information Science, 2011.

[14] Degree Webservices documentation, 2013,
http://download.deegree.org/documentation/3.2-pre13/deegree Webservi-
ces.pdf

[15] Sextante documentation, 2011,
http://gvsigce.sourceforge.net/sextante_web/pdf/SextantePaper.pdf

[16] M. Neteler, H. Mitasova, "Open Source GIS: A GRASS GIS Approach”,
Kluwer Academic Publishers/Springer, Boston, Dordrecht, and London,
2004.

[17] D. Wesloh, J. Sturley, “Implementing ISO Data Quality Standards Using
ESRI’s GIS Data ReViewer”, National Geospatial-Intelligence Agency,
2004.

[18] FGDC Facilities Working Group, “Spatial Data Transfer Standard
(SDTS). Part 7: CADD Profile”, Federal Geographic Data Committee,
2000.

[19] OASIS standard,
http://www.oasisopen.org

[20] J. Brauner, T. Foerster, S. Bastian, B. Bastian, "Towards a Research
Agenda for Geoprocessing Services”, 12th AGILE International Confer-
ence on Geographic Information Science, Hannover, Germany, pp.2-12,
2009.

[21] Z. Young, I. Raicu, S. Lu, ”Cloud Computing and Grid Computing 360-
Degree Compared”, Grid Computing Environments Workshop, pp.1-10,
2008.

[22] V. Bacu, T. Stefanut, D. Rodila, D. Gorgan, “Process Description Graph
Composition by gProcess Platform”, HiPerGRID - 3rd International
Workshop on High Performance Grid Middleware, Proceedings of CSCS-
17 Conference, vol.2., pp. 423-430, 2009.

[23] T. Mitchell, "Web Mapping Illustrated”, O’Reilly, First edition, ISBN
978-0-596-00865-9, pp.349, 2005.

[24] J. Rhodes, C. Bailey, P. Brown, “FalconView GeoTIFF Profile”, Georgia
Teach Research Institute, pp.1-25, 2006.

40 |Page

www.ijacsa.thesai.org

